Source code for common.utils.analysis.tsne
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import torch
import matplotlib
matplotlib.use('Agg')
from sklearn.manifold import TSNE
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as col
[docs]def visualize(source_feature: torch.Tensor, target_feature: torch.Tensor,
filename: str, source_color='r', target_color='b'):
"""
Visualize features from different domains using t-SNE.
Args:
source_feature (tensor): features from source domain in shape :math:`(minibatch, F)`
target_feature (tensor): features from target domain in shape :math:`(minibatch, F)`
filename (str): the file name to save t-SNE
source_color (str): the color of the source features. Default: 'r'
target_color (str): the color of the target features. Default: 'b'
"""
source_feature = source_feature.numpy()
target_feature = target_feature.numpy()
features = np.concatenate([source_feature, target_feature], axis=0)
# map features to 2-d using TSNE
X_tsne = TSNE(n_components=2, random_state=33).fit_transform(features)
# domain labels, 1 represents source while 0 represents target
domains = np.concatenate((np.ones(len(source_feature)), np.zeros(len(target_feature))))
# visualize using matplotlib
fig, ax = plt.subplots(figsize=(10, 10))
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=domains, cmap=col.ListedColormap([target_color, source_color]), s=20)
plt.xticks([])
plt.yticks([])
plt.savefig(filename)