Shortcuts

Source code for common.vision.datasets.imagelist

"""
@author: Junguang Jiang
@contact: [email protected]
"""
import os
from typing import Optional, Callable, Tuple, Any, List
import torchvision.datasets as datasets
from torchvision.datasets.folder import default_loader


[docs]class ImageList(datasets.VisionDataset): """A generic Dataset class for image classification Args: root (str): Root directory of dataset classes (list[str]): The names of all the classes data_list_file (str): File to read the image list from. transform (callable, optional): A function/transform that takes in an PIL image \ and returns a transformed version. E.g, :class:`torchvision.transforms.RandomCrop`. target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: In `data_list_file`, each line has 2 values in the following format. :: source_dir/dog_xxx.png 0 source_dir/cat_123.png 1 target_dir/dog_xxy.png 0 target_dir/cat_nsdf3.png 1 The first value is the relative path of an image, and the second value is the label of the corresponding image. If your data_list_file has different formats, please over-ride :meth:`~ImageList.parse_data_file`. """ def __init__(self, root: str, classes: List[str], data_list_file: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None): super().__init__(root, transform=transform, target_transform=target_transform) self.samples = self.parse_data_file(data_list_file) self.classes = classes self.class_to_idx = {cls: idx for idx, cls in enumerate(self.classes)} self.loader = default_loader self.data_list_file = data_list_file def __getitem__(self, index: int) -> Tuple[Any, int]: """ Args: index (int): Index return (tuple): (image, target) where target is index of the target class. """ path, target = self.samples[index] img = self.loader(path) if self.transform is not None: img = self.transform(img) if self.target_transform is not None and target is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.samples)
[docs] def parse_data_file(self, file_name: str) -> List[Tuple[str, int]]: """Parse file to data list Args: file_name (str): The path of data file return (list): List of (image path, class_index) tuples """ with open(file_name, "r") as f: data_list = [] for line in f.readlines(): split_line = line.split() target = split_line[-1] path = ' '.join(split_line[:-1]) if not os.path.isabs(path): path = os.path.join(self.root, path) target = int(target) data_list.append((path, target)) return data_list
@property def num_classes(self) -> int: """Number of classes""" return len(self.classes)
[docs] @classmethod def domains(cls): """All possible domain in this dataset""" raise NotImplemented

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started