Source code for common.vision.datasets.keypoint_detection.keypoint_dataset
"""
@author: Junguang Jiang
@contact: [email protected]
"""
from abc import ABC
import numpy as np
from torch.utils.data.dataset import Dataset
from webcolors import name_to_rgb
import cv2
[docs]class KeypointDataset(Dataset, ABC):
"""A generic dataset class for image keypoint detection
Args:
root (str): Root directory of dataset
num_keypoints (int): Number of keypoints
samples (list): list of data
transforms (callable, optional): A function/transform that takes in a dict (which contains PIL image and
its labels) and returns a transformed version. E.g, :class:`~common.vision.transforms.keypoint_detection.Resize`.
image_size (tuple): (width, height) of the image. Default: (256, 256)
heatmap_size (tuple): (width, height) of the heatmap. Default: (64, 64)
sigma (int): sigma parameter when generate the heatmap. Default: 2
keypoints_group (dict): a dict that stores the index of different types of keypoints
colored_skeleton (dict): a dict that stores the index and color of different skeleton
"""
def __init__(self, root, num_keypoints, samples, transforms=None, image_size=(256, 256), heatmap_size=(64, 64),
sigma=2, keypoints_group=None, colored_skeleton=None):
self.root = root
self.num_keypoints = num_keypoints
self.samples = samples
self.transforms = transforms
self.image_size = image_size
self.heatmap_size = heatmap_size
self.sigma = sigma
self.keypoints_group = keypoints_group
self.colored_skeleton = colored_skeleton
def __len__(self):
return len(self.samples)
[docs] def visualize(self, image, keypoints, filename):
"""Visualize an image with its keypoints, and store the result into a file
Args:
image (PIL.Image):
keypoints (torch.Tensor): keypoints in shape K x 2
filename (str): the name of file to store
"""
assert self.colored_skeleton is not None
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR).copy()
for (_, (line, color)) in self.colored_skeleton.items():
for i in range(len(line) - 1):
start, end = keypoints[line[i]], keypoints[line[i + 1]]
cv2.line(image, (int(start[0]), int(start[1])), (int(end[0]), int(end[1])), color=name_to_rgb(color),
thickness=3)
for keypoint in keypoints:
cv2.circle(image, (int(keypoint[0]), int(keypoint[1])), 3, name_to_rgb('black'), 1)
cv2.imwrite(filename, image)
[docs] def group_accuracy(self, accuracies):
""" Group the accuracy of K keypoints into different kinds.
Args:
accuracies (list): accuracy of the K keypoints
Returns:
accuracy of ``N=len(keypoints_group)`` kinds of keypoints
"""
grouped_accuracies = dict()
for name, keypoints in self.keypoints_group.items():
grouped_accuracies[name] = sum([accuracies[idx] for idx in keypoints]) / len(keypoints)
return grouped_accuracies
[docs]class Body16KeypointDataset(KeypointDataset, ABC):
"""
Dataset with 16 body keypoints.
"""
# TODO: add image
head = (9,)
shoulder = (12, 13)
elbow = (11, 14)
wrist = (10, 15)
hip = (2, 3)
knee = (1, 4)
ankle = (0, 5)
all = (12, 13, 11, 14, 10, 15, 2, 3, 1, 4, 0, 5)
right_leg = (0, 1, 2, 8)
left_leg = (5, 4, 3, 8)
backbone = (8, 9)
right_arm = (10, 11, 12, 8)
left_arm = (15, 14, 13, 8)
def __init__(self, root, samples, **kwargs):
colored_skeleton = {
"right_leg": (self.right_leg, 'yellow'),
"left_leg": (self.left_leg, 'green'),
"backbone": (self.backbone, 'blue'),
"right_arm": (self.right_arm, 'purple'),
"left_arm": (self.left_arm, 'red'),
}
keypoints_group = {
"head": self.head,
"shoulder": self.shoulder,
"elbow": self.elbow,
"wrist": self.wrist,
"hip": self.hip,
"knee": self.knee,
"ankle": self.ankle,
"all": self.all
}
super(Body16KeypointDataset, self).__init__(root, 16, samples, keypoints_group=keypoints_group,
colored_skeleton=colored_skeleton, **kwargs)
[docs]class Hand21KeypointDataset(KeypointDataset, ABC):
"""
Dataset with 21 hand keypoints.
"""
# TODO: add image
MCP = (1, 5, 9, 13, 17)
PIP = (2, 6, 10, 14, 18)
DIP = (3, 7, 11, 15, 19)
fingertip = (4, 8, 12, 16, 20)
all = tuple(range(21))
thumb = (0, 1, 2, 3, 4)
index_finger = (0, 5, 6, 7, 8)
middle_finger = (0, 9, 10, 11, 12)
ring_finger = (0, 13, 14, 15, 16)
little_finger = (0, 17, 18, 19, 20)
def __init__(self, root, samples, **kwargs):
colored_skeleton = {
"thumb": (self.thumb, 'yellow'),
"index_finger": (self.index_finger, 'green'),
"middle_finger": (self.middle_finger, 'blue'),
"ring_finger": (self.ring_finger, 'purple'),
"little_finger": (self.little_finger, 'red'),
}
keypoints_group = {
"MCP": self.MCP,
"PIP": self.PIP,
"DIP": self.DIP,
"fingertip": self.fingertip,
"all": self.all
}
super(Hand21KeypointDataset, self).__init__(root, 21, samples, keypoints_group=keypoints_group,
colored_skeleton=colored_skeleton, **kwargs)