Source code for common.vision.datasets.keypoint_detection.lsp
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import scipy.io as scio
import os
from PIL import ImageFile
import torch
from .keypoint_dataset import Body16KeypointDataset
from ...transforms.keypoint_detection import *
from .util import *
from .._util import download as download_data, check_exits
ImageFile.LOAD_TRUNCATED_IMAGES = True
[docs]class LSP(Body16KeypointDataset):
"""`Leeds Sports Pose Dataset <http://sam.johnson.io/research/lsp.html>`_
Args:
root (str): Root directory of dataset
split (str, optional): PlaceHolder.
task (str, optional): Placeholder.
download (bool, optional): If true, downloads the dataset from the internet and puts it \
in root directory. If dataset is already downloaded, it is not downloaded again.
transforms (callable, optional): PlaceHolder.
heatmap_size (tuple): (width, height) of the heatmap. Default: (64, 64)
sigma (int): sigma parameter when generate the heatmap. Default: 2
.. note:: In `root`, there will exist following files after downloading.
::
lsp/
images/
joints.mat
.. note::
LSP is only used for target domain. Due to the small dataset size, the whole dataset is used
no matter what ``split`` is. Also, the transform is fixed.
"""
def __init__(self, root, split='train', task='all', download=True, image_size=(256, 256), transforms=None, **kwargs):
if download:
download_data(root, "images", "lsp_dataset.zip",
"https://cloud.tsinghua.edu.cn/f/46ea73c89abc46bfb125/?dl=1")
else:
check_exits(root, "lsp")
assert split in ['train', 'test', 'all']
self.split = split
samples = []
annotations = scio.loadmat(os.path.join(root, "joints.mat"))['joints'].transpose((2, 1, 0))
for i in range(0, 2000):
image = "im{0:04d}.jpg".format(i+1)
annotation = annotations[i]
samples.append((image, annotation))
self.joints_index = (0, 1, 2, 3, 4, 5, 13, 13, 12, 13, 6, 7, 8, 9, 10, 11)
self.visible = np.array([1.] * 6 + [0, 0] + [1.] * 8, dtype=np.float32)
normalize = Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transforms = Compose([
ResizePad(image_size[0]),
ToTensor(),
normalize
])
super(LSP, self).__init__(root, samples, transforms=transforms, image_size=image_size, **kwargs)
def __getitem__(self, index):
sample = self.samples[index]
image_name = sample[0]
image = Image.open(os.path.join(self.root, "images", image_name))
keypoint2d = sample[1][self.joints_index, :2]
image, data = self.transforms(image, keypoint2d=keypoint2d)
keypoint2d = data['keypoint2d']
visible = self.visible * (1-sample[1][self.joints_index, 2])
visible = visible[:, np.newaxis]
# 2D heatmap
target, target_weight = generate_target(keypoint2d, visible, self.heatmap_size, self.sigma, self.image_size)
target = torch.from_numpy(target)
target_weight = torch.from_numpy(target_weight)
meta = {
'image': image_name,
'keypoint2d': keypoint2d, # (NUM_KEYPOINTS x 2)
'keypoint3d': np.zeros((self.num_keypoints, 3)).astype(keypoint2d.dtype), # (NUM_KEYPOINTS x 3)
}
return image, target, target_weight, meta