Source code for common.vision.datasets.segmentation.cityscapes
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import os
from .segmentation_list import SegmentationList
from .._util import download as download_data
[docs]class Cityscapes(SegmentationList):
"""`Cityscapes <https://www.cityscapes-dataset.com/>`_ is a real-world semantic segmentation dataset collected
in driving scenarios.
Args:
root (str): Root directory of dataset
split (str, optional): The dataset split, supports ``train``, or ``val``.
data_folder (str, optional): Sub-directory of the image. Default: 'leftImg8bit'.
label_folder (str, optional): Sub-directory of the label. Default: 'gtFine'.
mean (seq[float]): mean BGR value. Normalize the image if not None. Default: None.
transforms (callable, optional): A function/transform that takes in (PIL image, label) pair \
and returns a transformed version. E.g, :class:`~common.vision.transforms.segmentation.Resize`.
.. note:: You need to download Cityscapes manually.
Ensure that there exist following files in the `root` directory before you using this class.
::
leftImg8bit/
train/
val/
test/
gtFine/
train/
val/
test/
"""
CLASSES = ['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign',
'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle']
ID_TO_TRAIN_ID = {
7: 0, 8: 1, 11: 2, 12: 3, 13: 4, 17: 5,
19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12,
26: 13, 27: 14, 28: 15, 31: 16, 32: 17, 33: 18
}
TRAIN_ID_TO_COLOR = [(128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156),
(190, 153, 153), (153, 153, 153), (250, 170, 30), (220, 220, 0),
(107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60),
(255, 0, 0), (0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100),
(0, 0, 230), (119, 11, 32), [0, 0, 0]]
download_list = [
("image_list", "image_list.zip", "https://cloud.tsinghua.edu.cn/f/08745e798b16483db4bf/?dl=1"),
]
EVALUATE_CLASSES = CLASSES
def __init__(self, root, split='train', data_folder='leftImg8bit', label_folder='gtFine', **kwargs):
assert split in ['train', 'val']
# download meta information from Internet
list(map(lambda args: download_data(root, *args), self.download_list))
data_list_file = os.path.join(root, "image_list", "{}.txt".format(split))
self.split = split
super(Cityscapes, self).__init__(root, Cityscapes.CLASSES, data_list_file, data_list_file,
os.path.join(data_folder, split), os.path.join(label_folder, split),
id_to_train_id=Cityscapes.ID_TO_TRAIN_ID,
train_id_to_color=Cityscapes.TRAIN_ID_TO_COLOR, **kwargs)
def parse_label_file(self, label_list_file):
with open(label_list_file, "r") as f:
label_list = [line.strip().replace("leftImg8bit", "gtFine_labelIds") for line in f.readlines()]
return label_list
[docs]class FoggyCityscapes(Cityscapes):
"""`Foggy Cityscapes <https://www.cityscapes-dataset.com/>`_ is a real-world semantic segmentation dataset collected
in foggy driving scenarios.
Args:
root (str): Root directory of dataset
split (str, optional): The dataset split, supports ``train``, or ``val``.
data_folder (str, optional): Sub-directory of the image. Default: 'leftImg8bit'.
label_folder (str, optional): Sub-directory of the label. Default: 'gtFine'.
beta (float, optional): The parameter for foggy. Choices includes: 0.005, 0.01, 0.02. Default: 0.02
mean (seq[float]): mean BGR value. Normalize the image if not None. Default: None.
transforms (callable, optional): A function/transform that takes in (PIL image, label) pair \
and returns a transformed version. E.g, :class:`~common.vision.transforms.segmentation.Resize`.
.. note:: You need to download Cityscapes manually.
Ensure that there exist following files in the `root` directory before you using this class.
::
leftImg8bit_foggy/
train/
val/
test/
gtFine/
train/
val/
test/
"""
def __init__(self, root, split='train', data_folder='leftImg8bit_foggy', label_folder='gtFine', beta=0.02, **kwargs):
assert beta in [0.02, 0.01, 0.005]
self.beta = beta
super(FoggyCityscapes, self).__init__(root, split, data_folder, label_folder, **kwargs)
def parse_data_file(self, file_name):
"""Parse file to image list
Args:
file_name (str): The path of data file
Returns:
List of image path
"""
with open(file_name, "r") as f:
data_list = [line.strip().replace("leftImg8bit", "leftImg8bit_foggy_beta_{}".format(self.beta)) for line in f.readlines()]
return data_list