Shortcuts

Source code for dalib.adaptation.adda

"""
@author: Baixu Chen
@contact: [email protected]
"""
from typing import Optional, List, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from common.modules.classifier import Classifier as ClassifierBase


[docs]class DomainAdversarialLoss(nn.Module): r"""Domain adversarial loss from `Adversarial Discriminative Domain Adaptation (CVPR 2017) <https://arxiv.org/pdf/1702.05464.pdf>`_. Similar to the original `GAN <https://arxiv.org/pdf/1406.2661.pdf>`_ paper, ADDA argues that replacing :math:`\text{log}(1-p)` with :math:`-\text{log}(p)` in the adversarial loss provides better gradient qualities. Detailed optimization process can be found at `examples/domain_adaptation/image_classification/adda.py`. Inputs: - domain_pred (tensor): predictions of domain discriminator - domain_label (str, optional): whether the data comes from source or target. Must be 'source' or 'target'. Default: 'source' Shape: - domain_pred: :math:`(minibatch,)`. - Outputs: scalar. """ def __init__(self): super(DomainAdversarialLoss, self).__init__() def forward(self, domain_pred, domain_label='source'): assert domain_label in ['source', 'target'] if domain_label == 'source': return F.binary_cross_entropy(domain_pred, torch.ones_like(domain_pred).to(domain_pred.device)) else: return F.binary_cross_entropy(domain_pred, torch.zeros_like(domain_pred).to(domain_pred.device))
class ImageClassifier(ClassifierBase): def __init__(self, backbone: nn.Module, num_classes: int, bottleneck_dim: Optional[int] = 256, **kwargs): bottleneck = nn.Sequential( # nn.AdaptiveAvgPool2d(output_size=(1, 1)), # nn.Flatten(), nn.Linear(backbone.out_features, bottleneck_dim), nn.BatchNorm1d(bottleneck_dim), nn.ReLU() ) super(ImageClassifier, self).__init__(backbone, num_classes, bottleneck, bottleneck_dim, **kwargs) def freeze_bn(self): for m in self.modules(): if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d): m.eval() def get_parameters(self, base_lr=1.0, optimize_head=True) -> List[Dict]: params = [ {"params": self.backbone.parameters(), "lr": 0.1 * base_lr if self.finetune else 1.0 * base_lr}, {"params": self.bottleneck.parameters(), "lr": 1.0 * base_lr} ] if optimize_head: params.append({"params": self.head.parameters(), "lr": 1.0 * base_lr}) return params

Docs

Access comprehensive documentation for Transfer Learning Library

View Docs

Tutorials

Get started for Transfer Learning Library

Get Started