Source code for talib.finetune.bi_tuning
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import torch
import torch.nn as nn
from torch.nn.functional import normalize
from common.modules.classifier import Classifier as ClassifierBase
class Classifier(ClassifierBase):
"""Classifier class for Bi-Tuning.
Args:
backbone (torch.nn.Module): Any backbone to extract 2-d features from data
num_classes (int): Number of classes
projection_dim (int, optional): Dimension of the projector head. Default: 128
finetune (bool): Whether finetune the classifier or train from scratch. Default: True
.. note::
The learning rate of this classifier is set 10 times to that of the feature extractor for better accuracy
by default. If you have other optimization strategies, please over-ride :meth:`~Classifier.get_parameters`.
Inputs:
- x (tensor): input data fed to `backbone`
Outputs:
In the training mode,
- y: classifier's predictions
- z: projector's predictions
- hn: normalized features after `bottleneck` layer and before `head` layer
In the eval mode,
- y: classifier's predictions
Shape:
- Inputs: (minibatch, *) where * means, any number of additional dimensions
- y: (minibatch, `num_classes`)
- z: (minibatch, `projection_dim`)
- hn: (minibatch, `features_dim`)
"""
def __init__(self, backbone: nn.Module, num_classes: int, projection_dim=128, finetune=True, pool_layer=None):
head = nn.Linear(backbone.out_features, num_classes)
head.weight.data.normal_(0, 0.01)
head.bias.data.fill_(0.0)
super(Classifier, self).__init__(backbone, num_classes=num_classes, head=head, finetune=finetune, pool_layer=pool_layer)
self.projector = nn.Linear(backbone.out_features, projection_dim)
self.projection_dim = projection_dim
def forward(self, x: torch.Tensor):
batch_size = x.shape[0]
h = self.backbone(x)
h = self.pool_layer(h)
h = self.bottleneck(h)
y = self.head(h)
z = normalize(self.projector(h), dim=1)
hn = torch.cat([h, torch.ones(batch_size, 1, dtype=torch.float).to(h.device)], dim=1)
hn = normalize(hn, dim=1)
if self.training:
return y, z, hn
else:
return y
def get_parameters(self, base_lr=1.0):
"""A parameter list which decides optimization hyper-parameters,
such as the relative learning rate of each layer
"""
params = [
{"params": self.backbone.parameters(), "lr": 0.1 * base_lr if self.finetune else 1.0 * base_lr},
{"params": self.bottleneck.parameters(), "lr": 1.0 * base_lr},
{"params": self.head.parameters(), "lr": 1.0 * base_lr},
{"params": self.projector.parameters(), "lr": 0.1 * base_lr if self.finetune else 1.0 * base_lr},
]
return params
[docs]class Bituning(nn.Module):
"""
Bi-Tuning Module in `Bi-tuning of Pre-trained Representations <https://arxiv.org/abs/2011.06182?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+arxiv%2FQSXk+%28ExcitingAds%21+cs+updates+on+arXiv.org%29>`_.
Args:
encoder_q (Classifier): Query encoder.
encoder_k (Classifier): Key encoder.
num_classes (int): Number of classes
K (int): Queue size. Default: 40
m (float): Momentum coefficient. Default: 0.999
T (float): Temperature. Default: 0.07
Inputs:
- im_q (tensor): input data fed to `encoder_q`
- im_k (tensor): input data fed to `encoder_k`
- labels (tensor): classification labels of input data
Outputs: y_q, logits_z, logits_y, labels_c
- y_q: query classifier's predictions
- logits_z: projector's predictions on both positive and negative samples
- logits_y: classifier's predictions on both positive and negative samples
- labels_c: contrastive labels
Shape:
- im_q, im_k: (minibatch, *) where * means, any number of additional dimensions
- labels: (minibatch, )
- y_q: (minibatch, `num_classes`)
- logits_z: (minibatch, 1 + `num_classes` x `K`, `projection_dim`)
- logits_y: (minibatch, 1 + `num_classes` x `K`, `num_classes`)
- labels_c: (minibatch, 1 + `num_classes` x `K`)
"""
def __init__(self, encoder_q: Classifier, encoder_k: Classifier, num_classes, K=40, m=0.999, T=0.07):
super(Bituning, self).__init__()
self.K = K
self.m = m
self.T = T
self.num_classes = num_classes
# create the encoders
# num_classes is the output fc dimension
self.encoder_q =encoder_q
self.encoder_k = encoder_k
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data.copy_(param_q.data) # initialize
param_k.requires_grad = False # not update by gradient
# create the queue
self.register_buffer("queue_h", torch.randn(encoder_q.features_dim+1, num_classes, K))
self.register_buffer("queue_z", torch.randn(encoder_q.projection_dim, num_classes, K))
self.queue_h = normalize(self.queue_h, dim=0)
self.queue_z = normalize(self.queue_z, dim=0)
self.register_buffer("queue_ptr", torch.zeros(num_classes, dtype=torch.long))
@torch.no_grad()
def _momentum_update_key_encoder(self):
"""
Momentum update of the key encoder
"""
for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()):
param_k.data = param_k.data * self.m + param_q.data * (1. - self.m)
@torch.no_grad()
def _dequeue_and_enqueue(self, h, z, label):
batch_size = h.shape[0]
assert self.K % batch_size == 0 # for simplicity
ptr = int(self.queue_ptr[label])
# replace the keys at ptr (dequeue and enqueue)
self.queue_h[:, label, ptr: ptr+batch_size] = h.T
self.queue_z[:, label, ptr: ptr+batch_size] = z.T
# move pointer
self.queue_ptr[label] = (ptr + batch_size) % self.K
def forward(self, im_q, im_k, labels):
batch_size = im_q.size(0)
device = im_q.device
# compute query features
y_q, z_q, h_q = self.encoder_q(im_q)
# compute key features
with torch.no_grad(): # no gradient to keys
self._momentum_update_key_encoder() # update the key encoder
y_k, z_k, h_k = self.encoder_k(im_k)
# compute logits for projection z
# current positive logits: Nx1
logits_z_cur = torch.einsum('nc,nc->n', [z_q, z_k]).unsqueeze(-1)
queue_z = self.queue_z.clone().detach().to(device)
# positive logits: N x K
logits_z_pos = torch.Tensor([]).to(device)
# negative logits: N x ((C-1) x K)
logits_z_neg = torch.Tensor([]).to(device)
for i in range(batch_size):
c = labels[i]
pos_samples = queue_z[:, c, :] # D x K
neg_samples = torch.cat([queue_z[:, 0: c, :], queue_z[:, c+1:, :]], dim=1).flatten(start_dim=1) # D x ((C-1)xK)
ith_pos = torch.einsum('nc,ck->nk', [z_q[i: i+1], pos_samples]) # 1 x D
ith_neg = torch.einsum('nc,ck->nk', [z_q[i: i+1], neg_samples]) # 1 x ((C-1)xK)
logits_z_pos = torch.cat((logits_z_pos, ith_pos), dim=0)
logits_z_neg = torch.cat((logits_z_neg, ith_neg), dim=0)
self._dequeue_and_enqueue(h_k[i:i+1], z_k[i:i+1], labels[i])
logits_z = torch.cat([logits_z_cur, logits_z_pos, logits_z_neg], dim=1) # Nx(1+C*K)
# apply temperature
logits_z /= self.T
logits_z = nn.LogSoftmax(dim=1)(logits_z)
# compute logits for classification y
w = torch.cat([self.encoder_q.head.weight.data, self.encoder_q.head.bias.data.unsqueeze(-1)], dim=1)
w = normalize(w, dim=1) # C x F
# current positive logits: Nx1
logits_y_cur = torch.einsum('nk,kc->nc', [h_q, w.T]) # N x C
queue_y = self.queue_h.clone().detach().to(device).flatten(start_dim=1).T # (C * K) x F
logits_y_queue = torch.einsum('nk,kc->nc', [queue_y, w.T]).reshape(self.num_classes, -1, self.num_classes) # C x K x C
logits_y = torch.Tensor([]).to(device)
for i in range(batch_size):
c = labels[i]
# calculate the ith sample in the batch
cur_sample = logits_y_cur[i:i+1, c] # 1
pos_samples = logits_y_queue[c, :, c] # K
neg_samples = torch.cat([logits_y_queue[0: c, :, c], logits_y_queue[c + 1:, :, c]], dim=0).view(-1) # (C-1)*K
ith = torch.cat([cur_sample, pos_samples, neg_samples]) # 1+C*K
logits_y = torch.cat([logits_y, ith.unsqueeze(dim=0)], dim=0)
logits_y /= self.T
logits_y = nn.LogSoftmax(dim=1)(logits_y)
# contrastive labels
labels_c = torch.zeros([batch_size, self.K * self.num_classes + 1]).to(device)
labels_c[:, 0:self.K + 1].fill_(1.0 / (self.K + 1))
return y_q, logits_z, logits_y, labels_c